天天撸狠狠操,国产av麻豆天堂亚洲国产av刚刚碰 ,精品三级国产,伊人成人在线视频免费,亚洲精品国产一二三无码AV,伊人久久精品无码麻豆一区,国产精品视频免费一区二区三区 ,娱久久麻

      12月23日 譚海軍副教授學術報告(數學與統計學院)

      來源:數學與統計學院作者:時間:2025-12-16瀏覽:10設置

      報告人:譚海軍 副教授

      報告題目:The polynomial modules over the symplectic Lie algebras

      報告時間:20251223日(周二)14:30-15:30

      報告地點:云龍校區6號樓304報告廳

      主辦單位:數學與統計學院、數學研究院、科學技術研究院

      報告人簡介:

      東北師范大學數學與統計學院副教授,主要研究領域為李代數和結合代數的表示理論,主持中國博士后基金,吉林省青年基金等項目。在Algebr. Represent. Theory, J. Algebra等著名SCI雜志上發表學術論文多篇。

      報告摘要:

      If a polynomial algebra $\C[x_1,\cdots, x_n]$ is equipped with a module structure over a Lie algebra $\mathfrak{a}$, then we call it a polynomial module over $\mathfrak{a}$. In this talk, I will introduce some new  polynomial module structures over the symplectic Lie algebra $\sp_{2l}(\C)$.

      Let $\p$ be a maximal parabolic subalgebra of $\sp_{2l}(\C)$ with a nonzero abelian nilradical $\n$. There exist the $\sp_{2l}(\C)$-module structures on the polynomial algebra $\UU(\n)$ as a free $\UU(\n)$-module of rank one. Firstly, the corresponding $\sp_{2l}(\C)$-module structure is determined by two parameters $C\in\C$ and $\Phi\in\UU(\n)$, and so is denoted by $\tau(C,\Phi)$. Secondly, the parameter $C$ determines the simplicity of $\tau(C,\Phi)$. More precisely, $\tau(C,\Phi)$ is simple if and only if $C\notin\frac{l+1}{2}-\frac{1}{2}\Z_+$. And the parameter $\Phi$ determines  whether $\tau(C,\Phi)$ is a weight module, that is,  $\tau(C,\Phi)$ is a weight module if and only if $\Phi\in\C$. Thirdly, if $C\in\frac{l+1}{2}-\frac{1}{2}\Z_+$, then  $\tau(C,\Phi)$ is both Noetherian and Artinian, and whether the composition factor is a weight  module depends on whether a system of equations relative to the parameter $\Phi$  has solutions. This is a joint work with Chen Yan.


      返回原圖
      /